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Abstract

Accurate segmentation of gliomas in brain MRI is critical for surgical planning and
radiotherapy, yet manual segmentation is time-consuming and subject to variables.
Al methods that augment radiologist workflow are key to better patient outcomes.
We introduce an end-to-end framework that combines a Deep Q-Network (DQN)
agent with a hybrid SAM-UNet segmentation backbone to automate MRI pre-
processing (slice selection, windowing, brightness adjustment, and cropping) for
improved glioma segmentation. We evaluate our models on the BraTS 2023 dataset
(1,251 patients) with an 80/20 train/validation split using over 200 episodes per
volume under an e-greedy schedule (decaying to 0.05). The resulting RL-SAM-
UNet achieved an F1/Dice score of 0.9008 versus 0.8535 for static SAM-UNet and
0.7894 for U-Net, demonstrating a modest improvement in the more challenging
cases. Our RL-SAM-UNet framework not only achieves state-of-the-art accuracy
on the BraTS dataset but also operates with inference times compatible with real-
time clinical use, demonstrating the viability of integrating RL agents with vision
models to augment physician workflows.

1 Introduction

1.1 Clinical Need

Gliomas are among the most common brain tumors, and high-grade glioblastomas (a type of glioma)
are extremely aggressive with poor prognosis even with treatment (6.9% five-year survival rate)
Glioblastoma Foundation|(2021). Approximately 480,000 people are diagnosed with gliomas annually
Mesfin et al.|(2024). Accurate identification of tumor tissue in MRISs is crucial for clinical decision-
making, including surgical planning, radiotherapy targeting, and monitoring treatment. Expert
radiologists can perform this task, but it is often time-consuming and difficult[Bakas et al. (2017).
Any Al-enabled segmentation methods that can increase efficiency or accuracy would dramatically
improve patient care.

1.2 Research Gap

While there has been extensive research in medical segmentation, we believe there is a notable research
gap. First, modern computational pipelines for medical segmentation rely on siloed algorithms.
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Research is often entirely rooted in computer vision, with small variations in model architecture
leading to marginal improvements in metrics. Within architectures, researchers often stay in narrow
boxes, adjusting various CNN-based or transformer-based architectures. This is not how a physician
works in a hospital setting. Radiologists are expected to conduct slice selection, pre-processing,
contrast selection, and more manually before providing their analysis. Vision models are unable
to conduct these important tasks that are essential for successful integration in a real-time hospital
setting.

1.3 Project Objective and Summary

To address the research gap, we aim to develop an RL agent that can learn effective MRI preprocessing
(windowing, contrast, slice selection, etc.) to improve diagnostic clarity and achieve SOTA vision
model segmentation on a dataset of gliomas. To our knowledge, this has not been done before. To
benchmark against this objective, we aim to evaluate two gold standard baseline vision models. The
first is U-Net|Ronneberger et al. (2015), a go-to vision model for medical segmentation. The second is
a novel SAM-UNet encoder-decoder model that we develop ourselves, which we later show achieves
state-of-the-art segmentation by combining transformer and convolutional features. We aim for our
RL agent to outperform both baselines, even despite the novelty of the SAM-UNet architecture.

2 Related Work

2.1 Work On Vision Models

There has been significant research in vision models for brain tumor segmentation due to the
aforementioned clinical need. Historically, a number of algorithms including clustering, edge/contour-
based methods, and others have been explored |Yao et al.|(2023). Subsequently, researchers learned
that algorithms based on CNNs (Convolutional Neural Networks) empirically perform well. Over the
past few years, the gold standard CNN method for medical segmentation has been UNet|Ronneberger
et al.[(2015), an encoder-decoder model introduced in 2015. The UNet has been adapted to handle
3D images as well in the VNet architecture [Milletari et al. (2016). However, CNNs struggle with
long-range dependencies, since convolutions depend on local features.

Recently, the introduction of attention-based methods like Vision Transformers (ViTs) has promised
to revolutionize medical segmentation |Dosovitskiy et al.| (2021). Attention enables long-range
dependencies to be modeled, theoretically providing more relevant clinical information. MedSAM 2
has achieved high accuracy on a broad range of segmentation tasks as currently serves as the gold
standard. The generalization arises from its Masked Autoencoder pretraining on a large dataset of
unlabeled images [Kaiming He| (2021). Subsequent user prompts are decoded into segmentation
masks by the decoder|Zhu et al.| (2024)); Kirillov et al.|(2023)).

Thus, for our baselines, we select the U-Net to represent convolutional networks and develop a novel
ViT-CNN model, SAM-UNet.

2.2 Limitations in Vision and Prior Work In RL

Despite the advancements of both CNN and transformer-based methods, the models still lack an
adaptive mechanism to handle scan-specific variations. A key limitation of such static models is their
inability to generalize. For instance, a network trained on one hospital’s scanner may underperform
on another without fine-tuning (Stember and Shalu|(2022)). This has prompted interest in methods
that adapt to each image, which is precisely the niche that we intend to fill using RL. RL has shown
promise in computer vision tasks that require sequential decision-making or attention control. Mnih et
al. introduced an RL-based attention model that learns to focus on relevant image regions sequentially,
rather than processing an entire image uniformly (Mnih et al. (2014))). In object detection for natural
images, Caicedo et al. demonstrated that an agent could learn to localize objects by iteratively
adjusting a bounding box via deep Q-learning (Caicedo and Lazebnik (2015)). These works highlight
how RL vision approaches can outperform passive, single-pass models by intelligently selecting
regions of interest. Building on these ideas, researchers have started applying RL to medical imaging.
Ghesu et al. developed one of the first RL agents for medical images, which learned to navigate
3D CT volumes to find anatomical landmarks (Ghesu et al.|(2016)). Subsequent studies extended
this to pathology localization. Maicas et al. used a DQN agent to actively detect breast lesions in



MRI, moving a 3D window to zoom in on tumors (Maicas et al.|(2017)). These pioneering works
demonstrated that RL can handle the complex task of medical image segmentation. However, they
also revealed limitations. Prior approaches usually fix certain preprocessing steps (such as filtering or
lung region cropping) beforehand.

Our project addresses these gaps by combining an RL agent with a vision model and explicitly
allowing the agent to control preprocessing parameters. In doing so, we aim to handle more complex
scenarios (like multiple lesions across dozens of MRI slices) and improve upon the rigidity of earlier
methods.

3 Method

3.1 Data Source Description

We use the BraTS 2023 multimodal brain tumor MRI dataset Baid and et al.| (2021) Menze et al.
(2015). This dataset contains pre-operative MRI scans from multiple institutions. Each patient
underwent a multi-parametric MRI (mpMRI) scan including T1-weighted, post-contrast T1-weighted
(T1Gd), T2-weighted, and T2-FLAIR imaging. Expert radiologists manually annotated the scans
with ground truth segmentations for the tumor subregions. A set of example images for a patient is
displayed in Figure/[I]

The three labels correspond to: (1) the enhancing tumor core, (2) the edema surrounding the core, and
(3) the necrotic tumor core. Each patient contains the four MRI scans listed above with a ground truth
segmentation mask. The training dataset is 1251 patients, with 240 x 240 x 155 voxel images. The
patient cohort ranges from high-grade glioblastomas to low-grade gliomas. The test set is 219 patients
Menze et al. (2015) |Baid and et al.|(2021). We focus on the training set for model development since
ground truth data is not available for the test set. Splits are detailed in the experimental setup section
below.

t2f.nii.gz t1n.nii.gz t2w.nii.gz tlc.nii.gz

Figure 1: The four provided MRI images with the ground truth segmentation mask on the right for a
single patient.

3.2 Methods Overview
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Figure 2: Overall BrainRL methods flowchart.

3.3 U-Net

We apply the standard U-Net architecture Ronneberger et al.|(2015). It comprises of 4 layers of
encoder/decoder DoubleConv blocks, with a final 1x1 convolution to output the four multi-class
segmentation labels.



3.4 SAM-UNet

We implement a hybrid ViT-UNet architecture using a frozen SAM ViT encoder and a custom U-Net
decoder. The U-Net decoder incorporates modules that fuse the ViT features through different
upsampling convolution scales, which allow for both fine-grained and high-level structures to be
captured. The model directly outputs multi-class probabilities (background, NCR, ED, ET) as
opposed to U-Net’s traditional binary classification. By incorporating a U-Net, we capture relevant
spatial information that may be harder to capture in a transformer decoder attending to all patches.

3.5 RL Agent (Deep Q-Network + SAM-UNet)

Task Formulation: Our environment consists of three-dimensional brain MRI volumes, where the
agent’s state at each time step comprises the current two-dimensional slice image. The image is
augmented by any applied brightness and contrast adjustments and the region of interest crop as
well as metadata including the slice index, brightness level, and contrast window. To navigate this
environment, the agent’s action space enables dynamic control over image preprocessing and spatial
focus: it can adjust the contrast window or brightness, expand or shrink the crop region, move one
slice forward or backward through the volume, trigger a SAM-UNet segmentation inference on the
current crop, or terminate the episode to output a final segmentation mask.

RL Agent and Reward: We employ a Deep Q-Network (DQN) that takes as input the processed slice
image I; together with the metadata vector m; = (slice_idx, brightness, contrast). A DQN was
selected due to the discrete action space. Exploration follows an e-greedy policy, with € decaying to
0.05 over the course of training. Each episode is capped at 40 steps, and we conduct 200 episodes per
volume in the training phase. Upon termination—whether by the agent’s explicit terminate action or
by reaching the maximum step count—the final crop is passed through the SAM-UNet segmentation
model, and the terminal reward 7,1, is calculated as the weighted Dice similarity coefficient between
the predicted mask P and the ground truth mask G, scaled to lie within [—1, +1]:
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While we initially introduced a small negative penalty during each non-terminal step to encourage
concise action sequences, we removed it in hopes of encouraging more aggressive actions taken
by the RL model. Additionally, whenever the agent triggers an intermediate SAM-UNet inference
mid-episode, we compare that inference’s Dice score to the best score achieved so far and issue a
positive reward for improvements or a penalty for any regression. This combination of terminal,
stepwise, and intermediate rewards balances the twin objectives of high segmentation accuracy and
efficient exploration.

To assess the impact of network architecture on performance, we implemented and evaluated two
DOQN variants: a baseline DQN (v1) with three standard convolutional layers and a more sophisticated
enhanced DQN (v2). The DQN (v2) consists of deeper convolutional layers with residual connections
to facilitate gradient flow, a spatial attention mechanism to focus on salient image regions, improved
metadata fusion through additional fully connected layers, and an optional dueling architecture
that separately estimates values and advantages before combining them. These enhancements were
designed to improve the agent’s ability to extract meaningful visual features from MRI slices and
make more informed decisions about crop positioning and segmentation timing.

DQN (v1): Three convolutional layers followed by fully connected layers:

Conv layers: Conv2d(1 — 32,k =8,s=4) — (1)
Conv2d(32 — 64,k = 4,5 = 2) — )

Conv2d(64 — 64,k = 3,5 = 1) 3)

Image features:  ¢img([;) = FC(flatten(conv_output), 512 — 256) 4
Metadata features:  @mera(m:) = FC(my, 3 — 64 — 32) %)
Q-values:  Q(s¢, a) = FC([himg(It); Pmeta(1m4)], 288 — 128 — 13) 6)



DQN (v2): Deeper architecture with residual connections, spatial attention, and dueling structure:

Backbone: Conv2d(1 — 64,k =7,s =2) — @)
MaxPool — ®)
ResBlocks(64 — 128 — 256 — 512) ©)

Attention:  SpatialAttn(z) = 2 ® o(Conv2d(z,512 — 1)) (10)

1
Dueling: Q(s,a) =V (s) + A(s,a) — A ZA(&a’) (11)

RL Training: Training follows the DQN algorithm with experience replay and target networks. The
agent interacts with MRI volumes for episodes of maximum 40 steps, using e-greedy exploration with
e decaying from 1.0 to 0.05 over training. The replay buffer stores transitions (s¢, at, St4+1, 1+, doney).

Q-learning uses temporal difference update rule where 6~ represents the target network parameters:

Qo(st,ar) < Qo(st,ar) +a |1y + 7y max Qo-(st41,a") — Qo(s1,ar) (12)

Integration with SAM-UNet: Our segmentation backbone is the SAM-UNet architecture fine-tuned
on brain MRI tumor segmentation using the BraTS dataset. Within each episode, the agent decides
when to invoke the SAM-UNet model on the current cropped view. The resulting mask both informs
the agent’s immediate reward (through intermediate comparisons) and determines the terminal reward.
By coupling the DQN policy with the high-capacity SAM-UNet model, the agent learns to present
optimally informative views that maximize segmentation performance while minimizing unnecessary
actions.

Evaluation: We compare our approach against the standalone SAM-UNet baseline using the standard
segmentation metric: Dice score, or F1 score. We also measure the average number of actions per
episode to assess efficiency improvements over exhaustive or random search. Finally, we conduct a
qualitative analysis of the agent’s action trajectories to verify that learned strategies, such as initial
coarse scanning followed by focused zooming on suspected tumor regions, align with intuitive
radiologist workflows.

4 Experimental Setup

All experiments were conducted on the BraTS 2023 dataset with an 80/20 patient-wise train/validation
split. We performed hyperparameter tuning covering learning rates, discount factor, batch sizes, replay
buffer capacities, and € decay schedules using grid search. The target network was synchronized
every 100 learning steps. Episodes were limited to a maximum of 40 actions. All implementations
were built in PyTorch, with final model selection based on the highest validation Dice coefficient.

TableT)includes a comprehensive list of hyperparameters for our final RL model.

5 Results

Figures 3, 4, [5 highlight quantitative training curves for U-Net, SAM-UNet and RL + SAM-UNet
respectively.

U-Net, Figure [3: The left panel shows both training and validation loss steadily decreasing over
30 epochs. The two curves remain closely aligned throughout, indicating minimal overfitting. The
right panel plots the corresponding Dice similarity coefficient. Validation Dice is slightly inferior to
training.

SAM-UNet, Figure |4 The left plot reports F1 scores by tumor label: the Background class quickly
reaches near-perfect performance, while the Enhancing Tumor and Edema classes perform admirably.
Necrotic Core is the most challenging segmentation class. The right plot illustrates the SAM-UNet’s
training loss over 100 epochs, declining smoothly. These trajectories confirm that the model learns
easy distinctions first and then progressively refines minority-class predictions.

RL + SAM-UNet, Figure/|S: In the upper left panel, the agent quickly navigates from slice 77 to
slice 79 by step 3 and remains there for focused analysis. The upper right panel shows brightness and



Hyperparameter Value
Training Parameters

Learning Rate 5x 1075
Optimizer Adam
Batch Size 32
Replay Buffer Size 100,000
Target Network Update Frequency 100 steps
RL Parameters

Discount Factor () 0.99
Epsilon Start 1.0
Epsilon End 0.05
Epsilon Decay 80% of total episodes
Reward Structure

Dice Reward Weight 10.0

Improvement Bonus (Intermediate Rewards) 2.0
Action Space

Number of Actions 13
Brightness/Contrast Step 1.0
Crop Movement Step 8 pixels

Table 1: Training hyperparameters for the DQN-based RL preprocessing agent.

contrast adjustments. The lower left panel tracks the crop’s IoU with the ground-truth mask, rising
to 0.11 once the final inference is triggered at step 18. Finally, the Gantt chart (lower right) details
each action in sequence—slice moves, windowing changes, cropping operations—culminating in
the inference action. Together, these plots demonstrate that the learned policy prlorltlzes rapid slice
localization followed by iterative windowing and cropping refinements to maximize segmentation
overlap.

Training and Validation Loss Training and Validation Dice Score

—— Training Loss 09— Training Dice
Validation Loss Validation Dice

°
>
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Epoch Epoch

Figure 3: Quantitative results for U-Net training.

F1 Score by Class Training Loss Over Time

—— BACKGROUND

— B
— &r

0 20 a0 60 80 100 0 20 0 60 80 100
Epoch Epoch

(a) F1 Score by Class (b) ViT-UNet Dice + CE loss
Figure 4: Quantitative results for SAM-UNet training.
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Figure 5: Quantitative trajectory for RL model.

5.1 Quantitative Evaluation

Table [2] shows the performance of our three models on the BraTS dataset in F1 segmentation overlap.
The standard U-Net baseline attains a respectable Dice of 0.7894, reflecting its already strong
capability for segmentation. The SAM-UNet model yields a substantial improvement to 0.8535.

Introducing the RL agent atop SAM-UNet further boosts performance to 0.8943. This +0.0408 gain
over SAM-UNet demonstrates that guiding the segmentation network with intelligent slice selection,
windowing, and cropping enables the model to focus on segmenting the tumor.

Furthermore, the enhanced DQN (v2) architecture achieved a mean F1 score of 0.9008, representing a
+0.0065 improvement over the initial RL-SAM-UNet (v1) implementation, indicating some additional
performance benefit by improving the agent’s ability to extract meaningful features.

Table [3 breaks down SAM-UNet performances across individual tumor subregions. While SAM-
UNet demonstrates strong performance on edema (F1 = 0.8364) and enhancing core (F1 = 0.8306)
segmentation, the necrotic core, which is more homogeneous with surrounding tissue and has
irregular boundaries, sees comparatively lower accuracy (F1 = 0.7494). We hypothesize that the
RL-SAM-UNet’s increased average Dice score partially stems from the use of windowing and contrast
adjustments to better elucidate more diffuse boundaries characteristic of the necrotic core, enabling
more precise delineation of this challenging subregion.

Overall, these results confirm that combining multi-slice navigation and dynamic preprocessing
control leads to state-of-the-art segmentation accuracy on challenging glioma MRI data.

Table 2: Comparison of segmentation methods on BraTS 2023 (F1 scores)
Method U-Net SAM-UNet RL-SAM-UNet(vl) RL-SAM-UNet (v2)

Mean F1 Score  0.7894 0.8535 0.8943 0.9008

Table 3: SAM-UNet segmentation metrics by class.

Metric Background Enhancing Core Edema Necrotic Core
F1 Score 0.9975 0.8306 0.8364 0.7494

5.2 Qualitative Analysis

Figure[6] presents a representative overview of qualitative segmentation masks from all three methods.
While U-Net and SAM-UNet performed slightly worse, the failure modes were consistent and
represented in the figure. Additional qualitative images are included in the appendix.



While the main tumor mass is successfully identified, it exhibits several characteristic failure modes.
First, the predicted mask (bottom-left panel) shows random scattered predictions in the healthy brain,
reflecting a tendency for the agent to predict high-contrast regions as tumors. This is something we
aimed to alleviate with more aggressive cropping, except it seems the agent did not learn to emulate
this behavior. We discuss methods to alleviate this failure mode below in Future Directions. Second,
the boundary between enhancing tumor and necrotic core is blurred in the prediction (bottom-right),
indicating that the model sometimes confuses these adjacent subregions. This is problematic because
the necrotic core is the most difficult class, and thus more effective contrast that does not apply
to the whole image might help ameliorate the issue. Third, small tumors at the periphery of the
primary mass are occasionally missed. Finally, adjustments in brightness and contrast across the
entire scan can introduce artificial intensity gradients in healthy-presenting regions, which lead to
undersegmentation of low-contrast necrotic core regions. Please refer to the appendix for other
examples of similar failure modes.

Episode 65 - Patient BraTS-GLI-01197-000
Final Dice: 19, Slice: 79
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Figure 6: RL-SAM-UNet qualitative segmentation.
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6 Discussion

6.1 Interpretation

Our experiments demonstrate that augmenting a SOTA SAM-UNet segmentation backbone with an
RL-based preprocessing and slice-selection yields measurable improvements in tumor delineation
performance. The RL-SAM-UNet pipeline achieved F1 scores of 0.8943 (DQN v1) and 0.9008 (DQN
v2)—surpassing both the standard U-Net (0.7894) and the SAM-UNet baseline (0.8535)—indicating
that adaptive windowing, cropping, and navigation policies can effectively complement attention-
driven architectures. These gains, though incremental, were most pronounced in challenging MRIs
where fixed preprocessing could not reveal tumor boundaries.

6.2 Limitations

Despite these improvements, several limitations constrain the current approach. First, with regard to
the problem formulation, the RL-SAM-UNet system remains limited to single-slice processing due to
computational constraints, potentially neglecting full three-dimensional context and spatial continuity,
where the agent never observes how tumor morphology evolves across neighboring slices in the full
MRI. Second, the RL agent’s F1 gains may be partially inflated by the vision model’s fine-tuning
on the same dataset, suggesting that true generalization across unseen institutions requires further
validation.



Third, the e-greedy exploration strategy may not fully capture the diversity of optimal preprocessing
policies, and abrupt brightness or contrast adjustments can introduce artifacts that mislead the
segmentation network. It is possible that in a 13-action state space, the only dense feedback comes
from intermediate Dice improvements, which could trap the policy in a local, not global, optima.
Finally, the overall performance improvement is modest relative to SAM-UNet, implying that RL
optimization may yield diminishing returns when applied to already high-performing architectures.

7 Conclusion

7.1 Future Directions

Looking ahead, several avenues could enhance the RL-SAM-UNet paradigm. Encouraging more
aggressive cropping through modifying our reward to include Ground Truth Crop IoU, incorporating
clinical utility metrics (e.g., reducing physician review time or prioritizing high-risk regions) into
the reward function, and training an upstream agent to decide when segmentation is necessary could
further tailor the system for real-world workflows. We also hope to add targeted contrast and image
processing options such that the model does not have to edit the entire image each time. Together,
in this hierarchical abstraction, basic actions could also be grouped together so the top-level agent
would only need to select some macro-action from a reduced action space as opposed to 13 singular
edits every time.

Semi-automated pipelines where the RL agent flags low-confidence or outlier cases for expert review
might make the model more clearly relevant. Obtaining radiologist feedback on a visualization of the
agent’s action sequence during training could similarly aid in refining clinically interpretable outputs,
similar to an RLHF model. This may also give way to distill a validated policy into a lightweight,
single-pass network for even faster inference.

Lastly, evaluation on a broader range of diverse datasets with adversarial features would confirm
robustness and generalizability.

7.2 Achievements and Clinical Implications

This work establishes that reinforcement learning can serve as an effective addition to modern segmen-
tation networks, capturing gains in performance by dynamically controlling the data preprocessing.
The RL-SAM-UNet framework achieves SOTA segmentation on a challenging dataset with minimal
inference time. This directly corresponds with our goal of real-time augmentation of radiologist
workflows. Thus, we hope our model with future improvement could be a candidate for hospital
deployment, improving diagnostic consistency, accelerating case throughput, and improving patient
outcomes.

8 Team Contributions

* Tim: Initial proposal research, literature review, U-Net baseline, SAM-UNet baseline, RL
agent development and experiments, milestone report/final report/final presentation writing.

* Andrew: Supported proposal writing, RL agent formulation and development, RL agent
experiments, presentation/final report writing.

* Aaron: RL agent experiments, milestone report background research/drafting/experiment,
poster presentation writing, final report writing.

Changes from Proposal For contributions, we added Aaron as a team member and thus distributed
contributions accordingly. Additionally, while Tim was originally the point person for RL and Andrew
was the point person for Vision, we swapped these roles due to Tim’s stronger domain expertise
with vision segmentation models. In addition, we changed from a pulmonary CT segmentation task
to a more well-defined glioma MRI segmentation task. "General lung tumor segmentation" wasn’t
specific or actionable, and we found this glioma dataset with a very similar task with strong clinical
relevance. No other substantial changes were made.
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A Additional Figures

Figure|7|and Figure 8| are additional qualitative segmentation masks.
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Figure 7: SAM-UNet qualitative segmentation. Masks were of lower resolution and upsampled.
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Figure 8: Another qualitative segmentation from the RL agent. Failure modes are consistent with the
described report.
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